2005 Vol. 7, No. 4 673–675

Gold- and Silver-Catalyzed Highly Regioselective Addition of Active Methylenes to Dienes, Triene, and Cyclic Enol Ethers

Rene-Viet Nguyen, Xiao-Quan Yao, D. Scott Bohle,† and Chao-Jun Li*

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal QC H3A 2K6, Canada

cj.li@mcgill.ca

Received November 30, 2004

ABSTRACT

The combination of gold and silver salts catalyzed the addition of active methylenes to dienes, triene, and cyclic enol ethers with high regioselectivity. The catalysis provides a synthetically useful method for functionalized carbocycles and heterocycles through a highly atom-economical carbon—carbon bond formation.

Carbon—carbon bond formation is the essence of organic synthesis. A fundamental method for forming a carbon—carbon bond is via nucleophilic substitution.¹ On the other hand, recent emphasis in green chemistry² has called for the development of innovative chemical reactions based on "atom-economy", such as an overall addition reaction. In an effort to develop such reactions, we recently discovered a highly efficient addition of active methylenes to styrene derivatives catalyzed by the combination of AuCl₃—AgOTf.⁴ This reaction provided an efficient and catalytic alternative to the commonly used stoichiometric alkylation of 1,3-dicarbonyl compounds.⁵ The efficiency of the catalysis led us to explore the scope of such additions of alkenes other

than styrenes, which could have wide synthetic applications. A large class of synthetically important compounds is carbocycles and heterocycles.⁶ There has been sustained effort in developing efficient methods in synthesizing and functionalizing cyclic compounds. Herein, we wish to report that cyclic alkenes and dienes⁷ undergo highly regioselective addition with active methylenes efficiently (Scheme 1). The method generates highly useful synthetic intermediates for various applications.

Initial studies were conducted using dibenzoylmethane and 1,3-cyclooctadiene as a prototype reaction (Table 1). The combination of AuCl₃⁸ and AgOTf⁹ in CH₂Cl₂ provided product **1** as a single isomer in good yield (Table 1, entry

Scheme 1

$$R_1$$
 R_2
 $X=0, =$

Scheme 1

 R_1
 R_1
 R_2
 R_1
 R_2

[†] To whom crystallography inquiries should be addressed.

⁽¹⁾ Trost, B. M. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; pp 2–267.

⁽²⁾ Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998.

^{(3) (}a) Trost, B. M. Science **1991**, 254, 1471. (b) Trost, B. M. Acc. Chem. Res. **2002**, 35, 695.

⁽⁴⁾ Yao, X. Q.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 6884.

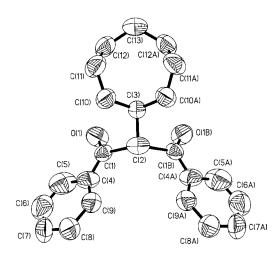

⁽⁵⁾ For similar alternatives, see: (a) Nakamura, M.; Endo, K.; Nakamura, E. *J. Am. Chem. Soc.* **2003**, *125*, 13002. (b) Pei, T.; Wang, X.; Widenhoefer, R. A. *J. Am. Chem. Soc.* **2003**, *125*, 648. (c) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. *J. Am. Chem. Soc.* **2004**, *126*, 4526.

Table 1. Addition of Dibenzoylmethane to Cyclooctadiene Catalyzed by Gold and Silver

entry^a	${ m catalyst}^b$	solvent	$\operatorname{yield}^{c}\left(\% ight)$
1	AuCl ₃ /AgOTf	$\mathrm{CH_{2}Cl_{2}}$	61
2	(PPh ₃)AuCl/AgOTf	$\mathrm{CH_{2}Cl_{2}}$	trace
3	AuCl ₃ /AgOTf	DCE^d	38
4	AuCl ₃ /AgOTf	MeCN^d	25
5	AuCl ₃ /AgOTf	$\mathrm{MeNO}_2{}^d$	55
6	AuCl ₃ /AgOTf	${f dioxane}^d$	26

 a Reactions were performed in dry dichloromethane. b Alkenes were added by syringe pump. c Isolated yield. d The position of the double bonds was confirmed by COSY-NMR. e Reactions were run at 0 °C. f The ratio of the two diastereoisomers was determined by 1 H NMR.

1). The position of the double bond was confirmed by X-ray crystallography analysis (see Figure 1). The use of (PPh₃)-AuCl (entry 2) instead of $AuCl_3$ as the catalyst led to a very low conversion. There is no increase in yield when the reaction was conducted under refluxing temperature with various solvents (entries 3–6). The use of a more coordinating solvent decreased the yield dramatically (entry 4). Thus, the use of $AuCl_3$ and AgOTf in CH_2Cl_2 at room temperature was found to be the most efficient and was used as the standard conditions.

Figure 1. ORTEP diagram of **1** showing atoms related by crystallographically imposed reflection symmetry for the plane defined by C(2), C(3), and C(13). Important bond distances include C(3)–C(10) 1.493(5); C(10)–C(11) 1.387(8); C(11)–C(12) 1.476 (8); C(12)–C(13) 1.5337) Å. Hydrogen atoms have been ommitted for clarity, and 45% probability ellipsoids are shown.

Subsequently, various cyclic dienes and cyclic enol ethers were reacted with dibenzoylmethane (entry 1–8) and 1-ben-

Table 2. Gold-Catalyzed Reaction of Cyclic Alkenes with β -Diketone^a

Diketone ^a					
entry	β-diketone	cyclic alkeneb	product	yield (%) ^c	
1	O O Ph		O O Ph Ph	65	
2 ^d	Ph Ph		Ph	42	
3 ^e	O O Ph Ph		Ph Ph	51	
4 ^e	O O Ph		Ph Ph	50	
5	Ph Ph	\bigcirc	Ph	68	
6	O O Ph Ph	OMe	O O Ph	O Ph 62 Ph	
7	O O Ph Ph	OEt OEt	(1.7:1) ^f O O Ph OEt Ph 44% (1.8:1) ^f 15%		
8	O O Ph Ph		Ph	58	
9	O O Me	, 🔾	Ph Me	38 (1.4:1) ^f	
10	O O Me	, 🗇	Ph	35 (1.2:1) ^f	

 a Reactions were performed in dry dichloromethane. b Alkenes were added by syringe pump. c Isolated yield. d The position of the double bonds was confirmed by COSY-NMR. e Reactions were run at 0 °C. f The ratio of the two diastereoisomers was determined by $^1\mathrm{H}$ NMR.

zoylacetone (entry 9-10) under the standard conditions (Table 2). It is noteworthy to mention that the addition to a triene (entry 2) is also selective to generate a diene product. The reaction must be carried out under low temperature in some cases in order to prevent polymerization or dimerization of the diene (Table 2, entries 3 and 4). The use of cyclic

674 Org. Lett., Vol. 7, No. 4, 2005

⁽⁶⁾ For a recent review, see: Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.

⁽⁷⁾ During the preparation of this manuscript, Hartwig and co-workers reported a similar reaction of dienes with palladium. See: Leitner, A.; Larsen, J.; Steffens. C.; Hartwig, J. F. *J. Org. Chem.* **2004**, *69*, 7552.

alkenes bearing a heteroatom¹⁰ (Table 2, entries 5–8) is also selective. However, addition of dibenzoylmethane to an ether-substituted DHP (Table 2, entries 6 and 7) led to a significant amount of bis-alkylation products. The use of simple cyclic and acyclic alkenes led to very low conversions while acyclic conjugated dienes led to a complicated mixture that is still under investigation. The use of sterically hindered dienes or less activated methylene (such as 2,4-pentadione and cyclic diketones) also led to low conversions under the present conditions.

A tentative mechanism for the addition is proposed in Scheme 2. The coordination of electron-rich alkenes with

(8) For other examples of gold-catalyzed reactions, see: Ito, Y.; Sawamura, T.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405. Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J. 2003, 9, 4339. Reetz, M. T.; Sommer, K. Eur. J. Org. Chem. 2003, 3485. Wei, C. M.; Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584. Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563. Deetlefs, M.; Raubenheimer, H. G.; Esterhuygen, M. W. Catal. Today 2002, 72, 29. Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458. Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654. Shi, Z.; He, C. J. Am. Chem. Soc. 2004, 126, 5964. Dyker, G.; Muth, E.; Hashmi, A. S. K.; Ding, L. Adv. Synth. Catal. 2003, 34, 1247. Nieto-Oberhuber, C.; Muñoz, M. P.; Buñuel, E.; Nevado, C.; Cárdenas, D. J.; Echavarre, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402. Fürstner, A.; Hannen, P. Chem. Commun. 2004, 2546. Zhu, J.; Germain, A. R.; Porco, J. A., Jr. Angew. Chem., Int. Ed. 2004, 43, 1239. Mamane, V.; Hannen, P.; Fürstner, A. Chem. Eur. J. 2004, 10, 4556.

(9) For other examples of silver-catalyzed reactions, see: Loncaric, C.; Manabe, K.; Kobayashi, S. Adv. Synth. Catal. 2003, 345, 475. Patmore, N. J.; Hague, C.; Cotgreave, J. H.; Mahon, M. F.; Frost, C. G.; Weller, A. S. Chem. Eur. J. 2002, 8, 2088. Hayashi, T.; Uozumi, Y.; Yamazaki, A.; Sawamura, M.; Hamashima, H.; Ito, Y. Tetrahedron. Lett. 1991, 32, 2799. Yanagisawa, A.; Matsumoto, Y.; Asakawa, K.; Yamamoto, H. Tetrahedron 2002, 58, 8331. Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 6038. Koseki, Y.; Omino, K.; Anzai, S.; Nagasaka, T. Tetrahedron Lett. 2000, 41, 2377. Xu, C.; Negishi, E. I. Tetrahedron Lett. 1999, 40, 431. Wipf, P.; Methot, J. L. Org. Lett. 1999, 1, 1253. Dalla, V.; Pale, P. New J. Chem. 1999, 23, 803, Yamasaki, S.; Fujii, K.; Wada, R.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 6536. Bates, R. W.; Satcharoen, V. Chem. Soc. Rev. 2002, 31, 12. Burgess, K. Chem. Ind. 1999, 18, 716. Bianchini, C.; Glendenning, L. Chemtracts 1997, 10, 339.

(10) Previously, the addition of activated methylene to dihydrofuran and pyrans catalyzed by trifluoroacetic acid has been reported; see: Bihovsky, R.; Kumar, M. U.; Ding, S.; Goyal, A. *J. Org. Chem.* **1989**, *54*, 4291.

Scheme 2. Tentative Mechanism for the Addition Reaction.

$$\begin{bmatrix} Au \end{bmatrix} \\ R_1 \\ X \\ \downarrow \end{pmatrix}_n \\ R_2 \\ H^+ \\ R_1 \\ X \\ \downarrow \end{pmatrix}_n \\ R_2 \\ H^+ \\ R_2 \\ H^+ \\ R_2 \\ H^+ \\ R_3 \\ R_4 \\ R_2 \\ H^+ \\ R_4 \\ R_5 \\ R_6 \\ R_7 \\ R_8 \\ R_9 \\ R$$

Au(III) activated the alkenes, which was followed by the addition of the 1,3-diketone—Au(III) complex to generate a gold intermediate. Protonolysis of the C—Au bond generated the final product.¹¹

In conclusion, we have developed a selective addition of 1,3-dicarbonyls to cyclic alkenes and dienes. Work is now in progress in our laboratories to improve the scope and yields of the reactions and to probe the mechanism.

Acknowledgment. We are grateful to Canada Research Chair foundation (to D.S.B. and C.J.L.), NSERC, CFI, Merck Frosst Canada, Inc., and McGill University for support of our research.

Supporting Information Available: Representative experimental procedure and the characterization of all products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL047543O

Org. Lett., Vol. 7, No. 4, 2005

⁽¹¹⁾ We thank the reviewers for their suggestions regarding this mechanism.